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ABSTRACT

In this paper, we study symmetric Finsler spaces. We first study some

geometric properties of globally symmetric Finsler spaces and prove that

any such space can be written as a coset space of a Lie group with

an invariant Finsler metric. Then we prove that a globally symmetric

Finsler space is a Berwald space. As an application, we use the notion

of Minkowski symmetric Lie algebras to give an algebraic description of

symmetric Finsler spaces and obtain the formulas for flag curvature and

Ricci scalar. Finally, some rigidity results of locally symmetric Finsler

spaces related to the flag curvature are also given.

Introduction

The study of Finsler geometry has become active recently due to the excellent

works of many geometers. In particular, the publication of several substantial

books has attracted more and more people to this interesting field (cf. [4], [7],

[15], etc.) One of the important motivations to study Finsler geometry is that

it has important applications in Physics and Biology ([2]). We must also note

that recently D. Bao, C. Robles and Z. Shen used the Randers metrics in Finsler

geometry to study Zermelo navigation on Riemannian manifolds ([5]). However,

only little attention has been paid to the study of symmetry of such spaces

(see, for example, [12]). As a contrary comparison, the theory of Riemannian
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symmetric spaces, mainly due to É. Cartan, plays a very important role in

Riemannian geometry.

The purpose of this paper is to study the symmetry of Finsler spaces. A

locally symmetric Finsler space is, by definition, a Finsler space (M, F ) such

that for any x ∈ M , there exists a neighborhood Nx of x such that the geodesic

symmetry Sx with respect to x is a local isometry of Nx ([12]). It is obvious

that such a space must be reversible. Following É. Cartan’s definition, we call a

Finsler space (M, F ) globally symmetric if each point of M is the isolated fixed

point of an involutive isometry.

Here we must give some remarks on isometries of a Finsler space. Let (M, F )

be a Finsler space, where F is positively homogeneous of degree one (but perhaps

not absolutely homogeneous). Then we have two ways to define the notion of

an isometry of (M, F ). On the one hand, we call a diffeomorphism σ of M onto

itself an isometry if F (dσx(y)) = F (y), for any x ∈ M and y ∈ Tx(M). On

the other hand, we can also define an isometry of (M, F ) to be a one-to-one

mapping of M onto itself which preserves the distance of each (ordered) pair of

points of M . It is well-known (cf. [13], for example) that the two definitions are

equivalent if the metric F is Riemannian. In [8], we proved that this is also true

for a Finsler metric. Using this result, we proved that the group of isometries

I(M, F ) of a Finsler space (M, F ) is a Lie transformation group of M and for

any point x ∈ M , the isotropic subgroup Ix(M, F ) is a compact subgroup of

I(M, F ). These results are very important to study symmetric Finsler spaces.

In this paper, we study locally and globally symmetric Finsler spaces. After

studying some general geometrical properties, we prove that a globally symmet-

ric Finsler space (M, F ) can be written as (G/H, F ), where G/H is a coset space

and F is a G-invariant Finsler metric on G/H . Moreover, (G, H) is an effective

Riemannian symmetric pair. Using this result, we prove that a globally sym-

metric Finsler space is a Berwald space. Then we use the notion of Minkowski

symmetric Lie algebras to give an algebraic description of globally symmetric

Finsler spaces. In particular, we study the duality, the decomposition theorem,

the flag curvature and the Ricci scalar of symmetric Finsler spaces. Finally, we

study locally symmetric Finsler spaces and obtain a geometric description of

complete locally symmetric Finsler spaces. As an application of the results in

this paper, we obtain some global rigidity results in Finsler manifolds, which,

in some sense, generalize some results of Foulon ([12]).
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The arrangement of this paper is as follows: in Section 1, we present some

preliminaries on Finsler geometry. In particular, we introduce the Chern con-

nection and the definitions of flag curvature and Ricci scalar. In Section 2, we

study the general geometric properties of a globally symmetric Finsler space

and prove that each such space must be Berwaldian. In Sections 3 through 7,

we introduce the notion of a Minkwoski symmetric Lie algebra to give an alge-

braic description of symmetric Finsler spaces and study the duality, curvature

and decomposition theorems. In Section 8, we obtain a geometric description

of complete locally symmetric Finsler spaces and present some rigidity results.

Finally, we make a conjecture to conclude this paper.

It should be noted that some of the results in Sections 3 through 6 of this

paper overlap with the results of our previous paper, in which we consider

globally symmetric Berwald spaces. However, for the convenience of the readers

and for the completeness of this paper, we state the details of these results. But

we omit the proof, which we refer to [11].

Notation: We use Einstein’s abbreviated notation of summation: Any repeated

pair of indices—provided that one is up and the other is down—is automatically

summed.

1. Preliminaries

In this section, we recall some definitions and fundamental results in Finsler

geometry. In particular, we will introduce the Chern connection, which is a

useful tool to study the geometric properties of Finsler spaces.

1.1 Finsler spaces.

Definition 1.1: Let V be a n-dimensional real vector space. A Minkowski norm

on V is a functional F on V which is smooth on V −{0} and satisfies the following

conditions:

(1) F (u) ≥ 0, ∀u ∈ V ;

(2) F (λu) = λF (u), ∀λ > 0;

(3) for any basis ε1, ε2, . . . , εn of V , write F (y) = F (y1, y2, . . . , yn) for y =

yjεj . Then the Hessian matrix

(gij) :=
([1

2
F 2

]

yiyj

)

is positive-definite at any point of V − {0}.
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Example: Let 〈 , 〉 be an inner product on V . Define F (y) =
√

〈y, y〉. Then

F is a Minkowski norm. In this case it is called Euclidean or coming from an

inner product.

It can be shown ([4]) that for a Minkowski norm F , we have F (u) > 0, ∀u 6= 0.

Furthermore

F (u1 + u2) ≤ F (u1) + F (u2),

where the equality holds if and only if u2 = αu1 or u1 = αu2 for some α ≥ 0.

For any Minkowski norm F on real vector space V we define

Cijk =
1

4
[F 2]yiyjyk .

Then for any y 6= 0, we can define two tensors on V , namely,

gy(u, v) = gij(y)uivj ,

Cy(u, v, w) = Cijk(y)uivjwk.

They are called the fundamental form and the Cartan torsion, respectively.

Definition 1.2: Let M be a (connected) smooth manifold. A Finsler metric on

M is a function F : TM → [0,∞) such that

(1) F is C∞ on the slit tangent bundle TM − {0};
(2) the restriction of F to any TxM , x ∈ M is a Minkowski norm.

Let (M, F ) be a Finsler space and x, y ∈ M . For any smooth curve σ(t),

0 ≤ t ≤ 1 connecting x and y, we can define the length of the curve by

L(σ) =

∫ 1

0

F (σ(t), σ′(t))dt.

Similarly, we can define the length of any piece-wise smooth curve connecting

x and y. The distance function d of (M, F ) is defined by

d(x, y) = inf
σ∈Γ(x,y)

L(σ),

where Γ(x, y) denotes the set of all piece-wise smooth curves emanating from x

to y. It can be proved ([4]) that d(x, y) ≥ 0 with the equality holds if and only if

x = y. Moreover, d(x, y) ≤ d(x, z) + d(z, y), ∀x, y, z ∈ M . However, generically

we cannot have d(x, y) = d(y, x). Therefore, d is not a distance in the general

sense.
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1.2 The Chern connection. Let (M, F ) be a Finsler space and

(x1, x2, . . . , xn)

be a local coordinate system on an open subset U of M . Then ∂
∂x1 , . . . , ∂

∂xn

form a basis for the tangent space at any point in U . For y ∈ Tx(M), x ∈ U ,

write y = yj ∂
∂xj . Then (x1, x2, . . . , xn, y1, y2, . . . , yn) is a (standard) coordinate

system on TU . Using the coefficients gij and Cijk , we define

Ci
jk = gisCsjk,

where (gij) is the inverse matrix of (gij). The formal Christofell symbols of the

second kind are

γi
jk = gis 1

2

(

∂gsj

∂xk
− ∂gjk

∂xs
+

∂gks

∂xj

)

.

They are functions on TU − {0}. We can also define some other quantities on

TU − {0} by

N i
j(x, y) := γi

jkyk − Ci
jkγk

rsy
rys,

where y = yi ∂
∂xi ∈ Tx(M) − {0}.

Now the slit tangent bundle TM −{0} is a fibre bundle over the manifold M

with the natural projection π. Since TM is a vector bundle over M , we have a

pull-back bundle π∗TM over TM − {0}.

Theorem 1.1 ([3]): The pull-back bundle π∗TM admits a unique linear con-

nection, called the Chern connection, which is torsion free and almost g-compa-

tible. The coefficients of the connection in the standard coordinate system is

Γl
jk = γl

jk − gli
(

Aijs

Ns
k

F
− Ajks

Ns
i

F
+ Akis

Ns
j

F

)

.

1.3 The flag curvature and the Ricci scalar. Let (M, F ) be a Finsler

space, (x1, x2, . . . , xn) be a local coordinate system and Γi
jk be the coefficients

of the Chern connection. Define ωi
j = Γi

jkdxk. To define the flag curvature, we

need some differential forms on the manifold TM − {0}. Let

δyi = dyi + N i
jdxj .

The curvature 2-forms of the Chern connection are

Ωi
j = dωi

j − ωk
j ∧ ωi

k.

Since Ωi
j are 2-forms on the manifold TM − {0}, they can be expanded as

Ωi
j =

1

2
Rj

i
kl

dxk ∧ dxl + Pj
i
kl

dxk ∧ δyl

F
+

1

2
Qj

i
kl

δyk

F
∧ δyl

F
.
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(It turns out that Qj
i
kl

= 0.) Let

Rjikl = gisRj
s
kl

.

Now we can define the notion of flag curvature. A flag on M at x ∈ M is a pair

(P, y), where P is a plane in the tangent space TxM and y is a nonzero vector

in P . The flag curvature of the flag (P, y) is defined to be

K(P, y) :=
ui(yjRjikly

l)uk

gy(y, y)gy(u, u) − [gy(y, u)]2
,

where u = ui ∂
∂xi is any nonzero vector in P such that P = span{y, u}. It can

be shown that the quantity is independent of the selection of u ([4]). The Ricci

scalar is defined as follows. For x ∈ M and y ∈ TxM − {0}, let l = y
F (y) (the

distinguished section). Then select n− 1 vectors in Tx(M), say v1, v2, . . . , vn−1,

such that l, v1, v2, . . . , vn−1 form an orthonormal basis of Tx(M) with respect

to the inner product gl(·, ·). Let Pi = span(y, vi), i = 1, 2, . . . , n − 1. Then the

Ricci scalar at y is defined to be

Ric(y) =

n−1
∑

i=1

K(Pi, y).

It can be shown that Ric(y) is equal to the trace of the endomorphism

u → Ry(u) of the vector space Tx(M) (see [7] for the details).

2. Globally symmetric Finsler spaces

The definition of globally symmetric Finsler space is a natural generalization

of É. Cartan’s definition of Riemannian globally symmetric spaces. We call a

Finsler space (M, F ) a globally symmetric Finsler space if for any point x ∈ M

there exists an involutive isometry σx (that is, σ2
x = id but σx 6= id) of (M, F )

such that x is an isolated fixed point of σx. We first give an effective method to

construct globally symmetric Finsler spaces. In this paper, manifolds are always

assumed to be connected.

First recall the notion of symmetric coset spaces. Let G be a Lie group, K a

closed subgroup of G. Then the coset space G/K is called symmetric if there

exists an involutive automorphism σ of G such that

G0
σ ⊂ K ⊂ Gσ,

where Gσ is the subgroup consisting of the fixed points of σ in G and G0
σ denotes

the identity component of Gσ.
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Theorem 2.1: Let G/K be a symmetric coset space. Then any G-invariant

reversible Finsler metric (if exists) F on G/K makes (G/K, F ) a globally sym-

metric Finsler space.

Proof: We first define some diffeomorphisms of G/K onto itself. Let o = eK

be the origin of G/K. Define a mapping σo of G/K onto itself by

σo(aK) = σ(a)K, a ∈ G.

Then for any x ∈ G/K, we select an arbitrary a ∈ G such that x = π(a), where

π is the natural projection of G onto G/K. Define a mapping σx of G/K onto

itself by

σx = τaσoτ
−1
a ,

where τa is defined by τa : gK → agK, g ∈ G. By the definition of symmetric

coset spaces, it is easily seen that σx is independent of the choice of a. It

is well-known that σx is an involutive diffeomorphism of G/K with x as an

isolated fixed point (cf. [14]). Next we prove that it is an isometry. Since F is

G-invariant, τa keeps F invariant, ∀a ∈ G. Therefore, we only need to prove

the case of σo. Let g, k be the algebra of G, K, respectively. Then σ induces an

involutive automorphism (still denote by σ) of g. By the definition, k coincides

with the set of fixed points of σ. Let m be the eigenspace of σ with eigenvalue

−1. Then we have

g = k + m (direct sum of subspaces).

Therefore, we can identify the tangent space To(G/K) with m. This way, F

corresponds to a norm on m which is K-invariant. By the results of [8] (see

the remarks about isometries in the introduction), we only need to check that

F (σ(y)) = F (y), ∀y ∈ m, i.e., F (y) = F (−y), ∀y ∈ m. But this is obvious

because F is reversible.

Using the above theorem, we can construct a large number of globally sym-

metric Finsler metrics which is non-Riemannian.

Example 1: Let G1/K1, G2/K2 be two symmetric coset spaces with K1, K2

compact (in this case, they are Riemannian symmetric spaces) and g1, g2 be in-

variant Riemannian metric on G1/K1, G2/K2, respectively. Let M = G1/K1 ×
G2/K2 and o1, o2 be the origin of G1/K1, G2/K2, respectively, and denote

o = (o1, o2) (the origin of M). Now, for

y = y1 + y2 ∈ To(M) = To1
(G1/K1)+̇To2

(G2/K2),
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we define

F (y) =

√

g1(y1, y1) + g2(y2, y2) + s
√

g1(y1, y1)s + g2(y2, y2)s,

where s is any integer ≥ 2. Then F (y) is a Minkowski norm on To(M) which

is invariant under K1 × K2. Hence it defines an G-invariant Finsler metric on

M (cf. [9]). By Theorem 1.1, (M, F ) is a globally symmetric Finsler space. It

is easy to check that F is non-Riemannian.

Next we consider the reverse of Theorem 1.1. For this purpose, we first need

to study the geometric properties of globally symmetric Finsler spaces.

Theorem 2.2: Let (M, F ) be a globally symmetric Finsler space. For x ∈ M ,

denote the involutive isometry of (M, F ) at x by σx. Then we have

(a) For any x ∈ M , (dσx)x = −id. In particular, F must be reversible;

(b) (M, F ) is (forward and backward) complete;

(c) (M, F ) is homogeneous. That is, the group of isometries of (M, F ),

I(M, F ), acts transitively on M .

(d) Let M̃ be the universal covering space of M and π be the projection

mapping. Then (M̃, π∗(F )) is a globally symmetric Finsler space, where

π∗(F ) is define by

π∗(F )(y) = F ((dπ)x̃(y)), y ∈ Tx̃(M̃).

Proof: (a) It is known ([4]) that there exists a neighborhood U of the origin

of Tx(M) such that the exponential mapping expx is a (C1)-diffeomorphism of

U onto its image and for any u ∈ U , expx(tu), t < |ε| is a geodesic through x.

Since σx is an isometry, and in a Finsler space short geodesics are minimizing

([4]), we easily see that σx maps geodesics into geodesics. Now σx(expx(tu) and

expx((dσx)xtu) are two geodesics through x with the same initial vector (dσx)xu.

Therefore, they coincide as geodesics. In particular, we have σx(expx(u)) =

expx((dσx)xu). Since σ2
x = id, we have (dσx)2x = id. To prove (dσx)x = −id, we

only need to prove that the number 1 is not an eigenvalue of (dσx)x. Suppose,

conversely, that there exists u 6= 0 such that (dσx)x(u) = u. Then (dσx)x(tu) =

tu, t ∈ R. Therefore, for any t we have

σx(expx(tu)) = expx((dσx)x)(tu) = expx(tu).

But this contradicts the assumption that x is an isolated fixed point of σx.

Therefore, we have (dσx)x = −id.



Vol. 162, 2007 ON SYMMETRIC FINSLER SPACES 205

(b) Let γ(t), 0 ≤ t ≤ l be a geodesic parametrized to have constant Finslerian

speed. We construct a curve γ̃ by γ̃(t) = γ(t), for 0≤ t≤ l; γ̃(t) = σγ(l)(γ(2l−t)),

for l ≤ t ≤ 2l. Similarly as in (a), we see that σγ(l)(γ(2l − t)) is a geodesic.

By (a), the incoming vector of the geodesic γ at γ(l) coincides the vector of the

geodesic γ̃ at γ(l). Therefore, by the uniqueness of the geodesics ([4]), γ̃(t) is

smooth and γ̃(t), 0 ≤ t ≤ 2l is a geodesic. It is obvious that this geodesic still

has constant Finslerian speed (since σγ(l) is an isometry). Therefore, (M, F ) is

forward geodesically complete (cf. [4]). By the Hopf-Rinow theorem for Finsler

spaces (cf. [4]), (M, F ) is forward complete. Since F is reversible, (M, F ) is

complete.

(c) Since (M, F ) is complete, for any x, y ∈ M , there exists a unit speed

minimal geodesic γ(t), 0 ≤ t ≤ T which realizes the distance of each pair of

points in γ (cf. [4]). Let x0 = γ(T/2). Note that F is reversible ((a)), we have

d(x0, x) = d(x, x0) = d(x0, y). By the proof of (a), we know that σx0
(x) = y.

Therefore, (M, F ) is homogeneous.

d) Let (M, F ) be a globally symmetric Finsler space. Then it is easily seen

that (M̃, π∗(F )) is a Finsler space. It is well-known that any diffeomorphism σ

of M can be lifted to a diffeomorphism σ̃ of M̃ such that σπ = πσ̃. Furthermore,

if σ(x) = x, then for any x̃ ∈ π̃−1(x), we can take σ̃ such that σ̃(x̃) = x̃. Now for

any ỹ ∈ M̃ , denote y = π(ỹ). Then there exists a diffeomorphism σ̃ỹ of M̃ such

that σyπ = πσ̃ỹ and σ̃ỹ(ỹ) = ỹ. Since σ2
x = idM , we have σ̃2

ỹπ−1(y) = π−1(y),

∀y ∈ M . Since σ̃ỹ is a diffeomorphism keeping ỹ fixed, we see that σ̃2
ỹ = idM̃ .

It is obvious that ỹ is an isolated fixed point of σ̃ỹ. By the definition of π∗(F ),

we see that σ̃ỹ is an isometry. Therefore, (M̃, π∗(F )) is a globally symmetric

Finsler space.

Corollary 2.3: Let (M, F ) be a globally symmetric Finsler space. Then for

any x ∈ M , σx is a local geodesic symmetry at x. In particular, (M, F ) is locally

symmetric and for any x ∈ M , the symmetry σx is unique.

Proof: By (a) of Theorem 2.2, we know that for any x ∈ M , (dσx)x = −id.

Therefore, for any X ∈ Tx(M), we have

σx(expx(tX)) = expx((dσx)x(tX)) = expx(−tX). (2.1)

This means that σx is the local geodesic symmetry at x. Hence (M, F ) is locally

symmetric. Since (M, F ) is complete (Theorem 2.2 (b)), expx is defined on the

whole space Tx(M) and it is surjective (cf. [4]). Therefore, by (2.1), σx is

unique.
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Theorem 2.4: Let (M, F ) be a globally symmetric Finsler space. Then there

exits a Riemannian symmetric pair (G, K) such that M is diffeomorphic to G/K

and F is invariant under G.

Proof: By (c) of Theorem 2.2, the group I(M, F ) of isometries of (M, F ) acts

transitively on M . In [8], we proved that I(M, F ) is a Lie transformation group

of M and for any x ∈ M , the isotropic subgroup Ix(M, F ) is a compact subgroup

of I(M, F ). Since M is connected, the identity component G = I0(M, F ) of

I(M, F ) is also transitive on M ([13]) and the subgroup K of G which leaves

x fixed is a compact subgroup of G. Furthermore, M is diffeomorphic to G/K

under the mapping gH → g · x, g ∈ G.

Similarly as in the Riemannian case, we define a mapping σ of G into itself

by: σ(g) = σxgσx, where σx denote the (unique) involutive isometry of (M, F )

with x as an isolated fixed point. Then it is easily seen that σ is an involutive

automorphism of G and the group K lies between the closed subgroup Kσ of

fixed points of σ and the identity component of Kσ. Furthermore, the group

K contains no normal subgroup of G other than {e}. That is, (G, K) is a

symmetric pair. Since K is compact, (G, K) is a Riemannian symmetric pair

(cf. [13]).

Now we can prove an important result. Before the proof, let us first recall some

definitions and known results. A Finsler space (M, F ) is called a Berwald space if

in any standard coordinate system (x1, x2, . . . , xn, y1, y2, . . . , yn) the coefficients

of the Chern connection, Γi
jk(x, y), have no independence on the vector y, or in

other words, if the Chern connection defines a linear connection directly on the

underlying manifold. One should refer to [4] for detailed properties of Berwald

spaces. To prove the following theorem, we still need the notion of parallel

translations and holonomy groups in Finsler geometry. Now we give a sketch of

them (see [7] for details).

Let (M, F ) be a Finsler space. Γi
jk be the Coefficients of the Chern connection

in some standard coordinate system. Let N i
j be as in Section 1 (it turns out

that N i
k = ymΓi

mk). Let c be a piecewise C∞ curve in M . For a vector filed

U = U i(t) ∂
∂xi |c(t), define the (nonlinear) covariant derivative DċU(t) of U along

c by

DċU(t) = {U i(t) + ċj(t)N i
j(c(t), U(t))} ∂

∂xi

∣

∣

∣

c(t)
.

U is called parallel along c if DċU(t) = 0. Define Pc : Tp(M) → Tq(M) by

Pc(u) = U(b),
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here U = U(t) denotes the (unique) parallel vector field along c with U(a) =

u. Pc is called the parallel translation along c. It is easily seen that Pc is

a C∞ diffeomorphism from TpM − {0} onto TqM − {0}, which is positively

homogeneous of degree one, i.e., Pc(λu) = λPc(u), λ > 0, u ∈ Tp(M).

Using the notion of parallel translation, we can define the holonomy group

of (M, F ) at a point p ∈ M , denoted by Hp, similarly as in the Riemannian

case (cf. [14]). The group Hp consists of diffeomorphisms of Tp(M)−{0}. Since

∀σ ∈ Hp, F (σ(u)) = F (u), u ∈ Tp(M), Hp is a transformation group of the

indicatrix

Ip = {y ∈ Tp(M): F (y) = 1}.
Two Finsler metrics F , F̄ are called affinely equivalent if they have the same

geodesics as parametrized curves, that is, if σ(t) is a geodesic of F , then it is

also a geodesic of F̄ and vice versa. The following result gives a method to use

holonomy group to construct Finsler metrics which is affinely equivalent to a

given Finsler metric.

Proposition 2.5 ([7]): Let (M, F̄ ) be a Finsler space, p ∈ M and Hp be the

holonomy group of F̄ at p. If Fp is a Hp invariant Minkowski norm on Tp(M),

then Fp can be extended to a Finsler metric F on M by parallel translations of

F̄ such that F is affinely equivalent to F̄ .

We also need the following

Proposition 2.6 ([7]): A Finsler metric F on a manifold M is a Berwald

metric if and only if it is affinely equivalent to a Riemannian metric g. In this

case, F and g have the same holonomy group at any point p ∈ M .

Now we can prove

Theorem 2.7: Let (M, F ) be a globally symmetric Finsler space. Then (M, F )

is a Berwald space. Furthermore, the connection of F coincides with the Levi-

Civita connection of a Riemannian metric g such that (M, g) is a Riemannian

globally symmetric space.

Proof: We first prove that F is Berwaldian. By Theorem 2.4, there exists a

Riemannian symmetric pair (G, K) such that M is diffeomorphic to G/K and

F is invariant under G. Fix a G-invariant Riemmannian metric g on G/K.

Without loss of generality, we can assume that (G, K) is effective. Since being

a Berwald space is a local property, we can assume further that G/K is simply

connected (see Theorem 2.2, (d)). Then we have a decomposition ([13]):

G/K = E × G1/K1 × G2/K2 × · · · × Gn/Kn,
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where E is a Euclidean space, Gi/Ki are simply connected irreducible Rieman-

nian globally symmetric spaces, i = 1, 2, . . . , n. Now we determine the holonomy

group of g at the origin of G/K. According to the de Rham decomposition the-

orem (cf. [14]), it is equal to the product of the holonomy groups of E and

Gi/Ki at the origin. Now E has trivial holonomy group. For Gi/Ki, by the

holonomy theorem of Ambrose and Singer ([1]), we know that the Lie algebra

hi of the holonomy group Hi is spanned by the linear mappings of the form

{τ̃−1Ro(X, Y )τ̃}, where τ denotes any piecewise smooth curve starting from

o, τ̃ denotes parallel displacements (with respect to the restricted Riemannian

metric ) along τ̃ , τ̃−1 is the inverse of τ̃ , Ro is the curvature tensor of Gi/Ki

of the restricted Riemannian metric and X, Y ∈ To(Gi/Ki). Since Gi/Ki is a

globally Riemannian symmetric space, the curvature tensor is invariant under

parallel displacements ([13]). Therefore,

hi = span{Ro(X, Y )|X, Y ∈ To(Gi/Ki)}.

On the other hand, Since Gi is a semisimple group, we know that the Lie algebra

of K∗

i = Ad(Ki) ≃ K is also equal to the span of Ro(X, Y ) ([13], p. 207). Since

Gi/Ki is simply connected, the groups Hi and K∗

i are connected ([13] and [14]).

Therefore, we have Hi = K∗

i . Consequently the holonomy group Ho of G/K at

the origin is

K∗

1 × K∗

2 × · · · × K∗

n.

Now F defines a Minkwoski norm Fo on To(G/K) which is invariant by Ho.

By Proposition 2.5, we can construct a Finsler metric F̄ on G/K by parallel

translations of g. By Proposition 2.6, F̄ is Berwaldian. Now, for any point

p0 = aK ∈ G/K, there exists a geodesic of the Riemannian manifold (G/K, g),

say γ(t), such that γ(0) = o, γ(1) = p0. Suppose the initial vector of γ is X0

and take X ∈ p such that dπ(X) = X0. Then it is known that γ(t) = exptX ·p0

and dτ(exptX) is the parallel translate of (G/K, g) along γ ([13]). Since F is

G-invariant, it is invariant under this parallel translate. This means that F and

F̄ coincide at Tp0
(G/K). Consequently they coincide everywhere. Thus F is a

Berwald metric.

For the next assertion ,we use a result of Szabó ([16]) which asserts that

for any Berwald metric on M there exists a Riemannian metric with the same

connection. We have proved that (M, F ) is a Berwald space. Therefore, there

exists a Riemannian metric g1 on M with the same connection as F . In [10],

weshowed that the connection of a globally (geodesic) symmetric Berwald space
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is affine symmetric. Therefore, (M, g1) is a Riemannian globally symmetric

space ([13]).

From the proof of Theorem 2.7, we obtain the following

Corollary 2.8: Let (G/K, F ) be a globally symmetric Finsler space and g =

k + p be the corresponding decomposition of the Lie algebras. Let π be the

natural mapping of G onto G/K. Then (dπ)e maps p isomorphically onto the

tangent space of G/K at p0 = eK. If X ∈ p, then the geodesic emanating from

p0 with initial tangent vector (dπ)eX is given by

γdπ·X(t) = exptX · p0.

Furthermore, if Y ∈ Tp0
(G/K), then (dexptX)p0

(Y ) is the parallel of Y along

the geodesic.

3. Minkowski symmetric Lie algebras

In this section, we use the notion of Minkwoski symmetric Lie algebras to give

an algebraic description of symmetric Finsler spaces. We first give the definition

(cf. [11]).

Definition 3.1: Let (g, σ) be a symmetric Lie algebra and g = k + m be

the canonical decomposition of g with respect to the involution σ. If F is a

Minkowski norm on m and the following condition is satisfied

gy([x, u], v) + gy(u, [x, v]) + 2Cy([x, y], u, v) = 0,

∀y 6= 0, y, u, v ∈ m, x ∈ k, where gy and Cy are the fundamental form and

Cartan torsion of F at y, respectively. Then (g, σ, F ) is called a Minkowski

symmetric Lie algebra.

Using the notion of Minkowski symmetric Lie algebras, we can give an al-

gebraic description of globally symmetric Finsler spaces. In the following, if

(G, K) is a symmetric pair, we use σ to denote the involutive automorphism

of G as well as that of the Lie algebra g of G. Let g = k + p be the canonical

decomposition of g with respect to σ. As usual, we identify the tangent space

To(G/K) with p. Since the proof of the following theorem is almost the same

as in [11], where we consider Berwald spaces, we omit it.

Theorem 3.1: Let (G/K, F ) be a globally symmetric Finsler space. Then

(g, σ, F ) is a Minkowski symmetric Lie algebra. Conversely, Let (g, σ, F ) be a
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Minkowski symmetric Lie algebra and suppose (G, K) is any pair associated

with (g, σ) such that K is closed and connected. Then there exists a Finsler

metric (still denoted by F ) on G/K such that (G/K, F ) is a locally symmetric

Finsler space. Furthermore, if the pair (G, K) is a symmetric pair, then G/K

with this metric is globally symmetric.

As pointed out in [11], if (g, σ, F ) is a Minkowski symmetric Lie algebra, then

(g, σ) is an orthogonal symmetric Lie algebra. We call (g, σ, F ) of the Euclidean

type, the compact type or the noncompact type if (g, σ) is of Euclidean, compact

or noncompact type, respectively. Accordingly, a globally symmetric Finsler

space is called of the Euclidean, the compact or the noncompact type if the

associated Minkowski symmetric Lie algebra is of the corresponding type.

4. The duality

By Theorem 2.7, the duality of symmetric Finsler spaces is the same as that of

the symmetric Berwald spaces. Therefore, we only need to restate the results

of [11].

Proposition 4.1: Let (g, σ, F ) be a Minkowski symmetric Lie algebra and

g = h + m be the canonical decomposition. Let g∗ = h +
√
−1m be the real

subalgebra of (gC)R. Define a Minkowski norm on
√
−1m by

F ∗(
√
−1u) = F (u), u ∈ m;

and let σ∗ be the involutive automorphism of g∗ induced by σ. Then (g∗, σ∗, F ∗)

is a Minkowski symmetric Lie algebra. Moreover, if (g, σ, F ) is of the compact

resp. the noncompact type, then (u, σ∗, F ∗) is of the noncompact resp. the

compact type and conversely.

Definition 4.1: The Minkowski symmetric Lie algebra (g∗, σ∗, F ∗) defined in

Proposition 4.1 is called the dual of (g, σ, F ).

It is clear that, if (g1, σ1, F1) is the dual of (g2, σ2, F2), then (g2, σ2, F2) is the

dual of (g1, σ1, F1).

Definition 4.2: Let (gi, σi, Fi), i = 1, 2, be two Minkowski symmetric Lie al-

gebras. Then they are called isomorphic if there exists an (Lie algebra) iso-

morphism ϕ of g1 onto g2 such that ϕ ◦ σ1 = σ2 ◦ ϕ and F1(x) = F2(ϕ(x)),

∀x ∈ g1.
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Proposition 4.2: Let (gi, σi, Fi) be two Minkowski symmetric Lie algebras.

Then (g1, σ1, F1) is isomorphic to (g2, σ2, F2) if and only if (g∗1, σ
∗

1 , F ∗

1 ) is iso-

morphic to (g∗2, σ
∗

2 , F ∗

2 ).

5. Decomposition theorems

In the Riemannian case, every (simply connected) Riemannian symmetric space

can be uniquely decomposed into the product of an Euclidean space, a Rie-

mannian symmetric space of the compact type and a Riemannian space of the

noncompact type. Furthermore, each Riemannian space of the compact type or

the noncompact type can be uniquely decomposed into the product of the irre-

ducible ones (cf. [13]). It is natural to consider the same problem for symmetric

Finsler spaces. However, we must be careful because in this case we do not have

the orthogonality. Therefore, the product of two symmetric Finsler spaces may

not be unique. To give the accurate definition, we need the following result:

Theorem 5.1: Let (M, F ) be a globally symmetric Finsler space and (G, K) an

effective Riemannian symmetric pair such that M ≃ G/K. Then the connection

of F (as a Berwald metric) coincides with the canonical connection of G/K. In

particular, for any effective Riemannian symmetric pair (G, K), the connection

is the same for all G-invariant Finsler metrics on G/K.

Proof: By Theorem 2.7, the connection of F coincides with the Levi-Civita

connection of a G-invariant Riemannian metric g on G/K. But the Levi-Civita

connection on G/K is the same for all G-invariant Riemannian metrics on G/K

(this is called the canonical connection, see [13] and [14]). Therefore, the theo-

rem follows.

By Theorem 5.1, to consider the decomposition of symmetric Finsler spaces,

we need not consider the connection. Therefore, we have the following

Definition 5.1: Let (M, F ), (M1, F1), (M2, F2) be globally symmetric Finsler

spaces. Then (M, F ) is called the product of (M, F1) and (M2, F2) if M ≃
M1 × M2 and Fi = F |Mi

, i = 1, 2. A globally symmetric Finsler space of the

compact or the noncompact type is called irreducible if it can not be written as

the product of two globally symmetric Finsler spaces.

Similarly, we can define the notion of product of finitely many globally sym-

metric Finsler spaces. Now we have
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Theorem 5.2: Let (M, F ) be a simply connected globally symmetric Finsler

space. Then (M, F ) can be decomposed into the product of a reversible Minkwo-

ski space, a globally symmetric Finsler space of the compact type and a glob-

ally symmetric Finsler space of the noncompact type. Moreover, every simply

connected symmetric Finsler space of compact or noncompact type can be de-

composed into the product of irreducible symmetric Finsler spaces. The decom-

position is unique as manifolds (in general not unique as Finsler spaces).

Proof: By Theorem 2.7, the only thing we need to check is that the coset

space R
n ≃ R

n/{0} endowed with a Finsler metric invariant under the parallel

translation is a Minkowski space. But this is obvious.

Remark: Although we have the decomposition theorem, the classification of

symmetric Finsler spaces is not reduced to the case of irreducible ones, because

the product of two or more symmetric Finsler spaces is not unique.

6. The flag curvature

In [11], we give the formula for the flag curvature of symmetric Berwald spaces.

By Theorem 2.7, it is also valid for globally symmetric Finsler spaces. We only

state the results here.

Theorem 6.1: Let (g, σ, F0) be a Minkowski symmetric Lie algebra. Let (G, K)

be a pair associated with (g, σ), g = k + p be the canonical decomposition of

(g, σ) and suppose there exists an invariant Finsler metric F on G/K (this is

the case when K is connected and closed, see [11]) such that the restriction of

F to p is F0. Then the curvature tensor of F is given by:

Ro(u, v)w = −[[u, v], w], ∀u, v, w ∈ p,

and the flag curvature of the flag (P, y), y 6= 0, y ∈ P is given by

(6.1) K(P, y) = gl([[l, v], l], v),

where l = y/F (the distinguished section) and {l, u} is an orthonormal basis of

the plane P with respect to gl.

Corollary 6.2: Let (g, σ, F0) be a Minkowski symmetric Lie algebra and

(g∗, σ∗, F ∗

0 ) be its dual. Let (G, K) and (G∗, K∗) be two pairs associated with

(g, σ, F0) and (g∗, σ∗, F ∗

0 ), respectively. Suppose there exist invariant Finsler

metrics F on G/K and F ∗ on G∗/K∗ such that the restriction of F and F ∗
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on p and
√
−1p is equal to F0 and F ∗

0 , respectively. Then the flag curvature of

(G/K, F ) and (G∗/K∗, F ∗) satisfies:

K(P, y) = −K(
√
−1P,

√
−1y), 0 6= y ∈ p,

where P is a plane in p containing y and
√
−1P is the plane in

√
−1p spanned

by
√
−1u, u ∈ P .

Theorem 6.3: Let (G/H, F ) be globally symmetric Finsler space with G semi-

simple and (g, σ, F ) the associated Minkowski symmetric Lie algebra with the

canonical decomposition g = h + p. Then

(1) if (g, σ) is of the compact type, then the flag curvature of (G/H, F ) is

everywhere ≥ 0;

(2) if (g, σ) is of the noncompact type, then the flag curvature of (G/H, F ) is

everywhere ≤ 0.

Moreover, in (1) and (2), the flag curvature vanishes if and only if in the flag

(P, y), the plane P is commutative.

7. The Ricci Scalar

By Theorem 6.1, to compute the Ricci scalar of the symmetric Finsler space

(G/K, F ), we only need to compute the trace of the endomorphism −(ad y)2 of

the vector space p. The computation will be completed through several lemmas.

Since (G, K) is a Riemannian symmetric pair, (g, σ) is an orthogonal sym-

metric Lie algebra. By the theory of orthogonal Lie algebras ([13]), g has the

decomposition as a direct sum of ideals:

g = g0 + g1 + g2, (7.1)

where g0 is an abelian Lie algebra, g1 (g2) is a noncompact (compact) semisimple

Lie algebra. Moreover, let σi, i = 0, 1, 2 be the restriction of σ to gi, then

(g, σ0), (g1, σ1), (g2, σ2) are orthogonal symmetric Lie algebras of the Euclidean,

the noncompact and the compact type, respectively. Let gi = ki + pi be the

canonical decomposition of the orthogonal symmetric Lie algebra (gi, σi), i =

0, 1, 2.

Lemma 7.1: Let y = y0 + y1 + y2 be the decomposition of y corresponding

to (7.1). Then Ric(y) = Ric(y0) + Ric(y1) + Ric(y2). Furthermore, Ric(yi) is

equal to the Ricci scalar of Gi/Ki at yi, i = 0, 1, 2.

Proof: Since (7.1) is the direct sum of ideals, we have [y0, x] ∈ g0, ∀x ∈ p.

Hence [y1, [y0, x]] ∈ g0 ∩ g1 = 0. This means that (ad y1)(ad y0) = 0 as an
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endomorphism of p. Similarly we have (ad yi)(ad yj) = 0, i 6= j, i, j = 0, 1, 2.

Therefore, we have (as endomorphisms of p)

(ad y)2 = (ad y0)
2 + (ad y1)

2 + (ad y2)
2.

Taking the trace in the above equation we get Ric(y) = Ric(y0) + Ric(y1) +

Ric(y2). Since (adyi)(pj) = 0, for i 6= j, we have

Tr((adyi)
2|p) = Tr((adyi)

2|pi
).

This proves the lemma.

It is obvious that Ric(y0) = 0. Therefore, Lemma 7.1 reduces the computation

to the cases of symmetric Finsler space of the compact and the noncompact type.

By the duality, we only need to consider the compact type. Therefore, in the

following, we assume that G/K is a symmetric Finsler space of the compact

type. Then g is a compact semisimple Lie algebra.

We still need some algebraic preliminaries. Details can be found in [13] (Chap-

ter VII). Let a be a maximal abelian subspace of p containing y. Extend a to

a maximal abelian subspace t of g. Then the complexification tC is a Cartan

subalgebra of gC . Let ∆ be the root system of gC with respect to tC and ∆p

be the subset of roots in ∆ which do not vanish identically on aC . Let Σ be

the corresponding set of restricted roots. Fix certain compatible ordering in the

sense of [13]. Let ∆+ and Σ+ be the set of positive roots and positive restricted

roots, respectively. For any linear form λ in aC , put

kλ = {w ∈ k| (ad x)2w = λ(x)2w, ∀x ∈ a},
pλ = {z ∈ p| (ad x)2z = λ(x)2z, ∀x ∈ a}.

Then k−λ = kλ, p−λ = pλ. It is proved in [13] that

k = k0 +
∑

λ∈Σ+

kλ, p = a +
∑

λ∈Σ+

pλ. (7.2)

Note that since g is a compact semisimple Lie algebra, for any λ ∈ Σ and x ∈ a,

λ(x) is pure imaginary. Therefore, λ(x)2 is a nonpositive real number.

Lemma 7.2: For any λ ∈ Σ+, kλ is isomorphic to pλ as a vector space.
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Proof: First note that [a, pλ] ⊂ kλ. In fact, for any x, x′ ∈ a, z ∈ pλ, we have

[x, [x, [x′, z]]] = [x, [[x, x′], z]] + [x, [x′, [x, z]]]

= [x, [x′, [x, z]]]

= [[x, x′], [x, z]] + [x′, [x, [x, z]]]

= [x′, [x, [x, z]]]

= [x′, λ(x)2z] = λ(x)2[x′, z].

This proves our assertion. Similarly we have [a, kλ] ⊂ pλ. Since λ ∈ Σ, we can

select x0 ∈ a such that λ(x0) 6= 0. Then it is obvious that ad x0 is a one-to-one

linear mapping from kλ to pλ as well as from pλ to kλ. Therefore, kλ is linearly

isomorphic to pλ.

With the above preparation, we now obtain the formula for the Ricci scalar

for symmetric Finsler spaces of the compact type.

Lemma 7.3: If G/K is of the compact type, then Ric(y) = −1/2B(y, y), where

B is the Killing form of the Lie algebra g.

Proof: Let Σ∗ be the subset of Σ+ consisting of the elements which takes

nonzero value on y. By (7.2) we have

Tr((ad y)2|p) =
∑

λ∈Σ∗

λ(y)2 dim pλ,

T r((ad y)2|k) =
∑

λ∈Σ∗

λ(y)2 dim kλ.

By Lemma 7.2, we have dim kλ = dim pλ, ∀λ ∈ Σ. Therefore, we have

Tr((ad y)2|p) = Tr((ad y)2|k).

Since k and p are invariant subspaces of (ad y)2, we have

B(y, y) = Tr((ad y)2|g) = Tr((ad y)2|k) + Tr((ad y)2|p)
= 2Tr((ad y)2|p).

Therefore,

Ric(y) = −Tr((ad y)2|p) = −1

2
B(y, y).

By the duality, Lemma 7.3 is also valid for a symmetric Finsler space of the

non compact type. In summarizing, we have proved
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Theorem 7.4: Let (G/K, F ) be a symmetric Finsler space and g = k + p

be the canonical decomposition of the corresponding Minkowski symmetric Lie

algebras. Identifying p with the tangent space To(G/K) at the origin, we have

Ric(y) = − 1
2B(y, y), ∀y(6= 0) ∈ p, where B denotes the Killing form of the Lie

algebra g.

As an application of the formula of the Ricci scalar, we have

Theorem 7.5: Let (G/H, F ) be a n-dimensional symmetric Finsler space. Sup-

pose F is an Einstein metric, i.e., Ric(y) = (n − 1)cF (y)2, for any nonzero

y ∈ T (G/H), where c is a constant. Then the following assertions hold:

1) if c = 0, then F is locally Minkowskian;

2) if c > 0, then F is Riemannian and G/H is compact;

3) if c < 0, then F is Riemannian and G/H is diffeomorphic to a Euclidean

space.

Proof: Let (g, σ) be the orthogonal symmetric Lie algebra associated with the

Riemannian symmetric pair (G, K) and g = k + p be the canonical decompo-

sition. As above, we identify p with the tangent space To(G/K). Let g be

decomposed into the direct sum of ideals as in (7.1). Recall that if g is semisim-

ple, then the restriction of the Killing form to p is positive definite or negative

definite according to it being noncompact or compact ([13]). Now we prove the

theorem case by case.

1) If c = 0, then for any y ∈ p we have

0 = Ric(y) = −1

2
B(y, y).

This means that in the decomposition (7.1), we have g1 = g2 = 0. Therefore,

(g, σ) is of the Euclidean type. Hence F is locally Minkowskian.

2) If c > 0, then we have,

Ric(y) = cF (y)2 = −1

2
B(y, y) > 0, ∀y(6= 0) ∈ p.

This means that the Killing form is negative definite on p. Hence in (7.1) we

have g0 = g1 = 0. That is, g is compact semisimple. Thus G is a compact

semisimple Lie group. Therefore, G/K is compact. On the other hand, since

F (y) =

√

− 1

2c
B(y, y), ∀y 6= 0,

and − 1
2c

B(y, y) is an inner product on p, F is Riemannian.
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3) Suppose that c < 0. Then similarly as in case 2), we can prove that F

is Riemannian and G is a noncompact semisimple Lie group. Thus (g, σ) is an

orthogonal symmetric Lie algebra of the noncompact type. Therefore, G/K is

diffeomorphic to a Euclidean space ([13]).

8. Locally symmetric Finsler spaces and some rigidity results results

In this section, we will give a geometric description of locally symmetric Finsler

spaces. We first note a result of Busemeann and Phadke ([6]) which asserts

that a locally symmetric G-space has a globally symmetric universal covering

space. When the G-space is smooth, it is a (complete) Finsler space. Therefore,

combining Theorem 2.2 (d) and Theorem 2.7, we have:

Theorem 8.1: Let (M, F ) be a complete locally symmetric Finsler space. Then

for any x ∈ M , there exists a simply connected globally symmetric Finsler space

(M̃, F̃ ), a neighborhood N of x in M , and an isometry of N onto an open subset

Ñ of M̃ . In particular, (M, F ) is a Berwald space.

In [10], we proved that a Berwald space is locally symmetric if and only

if the flag curvature is invariant under the parallel displacements of its linear

connection. Thus we have

Theorem 8.2: Let (M, F ) be a complete Finsler space. Then (M, F ) is locally

symmetric if and only if it is Berwaldian and the flag curvature is invariant

under all parallel displacements.

The results of this paper imply some global rigidity results related to the flag

curvature in Finsler manifolds. First we have

Theorem 8.3: Let (M, F ) be a complete locally symmetric Finsler space. If

the flag curvature of (M, F ) is everywhere nonzero, then F is Riemannian.

Proof: Let x ∈ M . By Theorem 8.1, there exists a neighborhood N of x, a

simply connected globally symmetric Finsler space (M̃, F̃ ) and an isometry from

N onto an open subset Ñ of M̃ . By the assumption, the flag curvature of (M̃, F̃ )

is everywhere nonzero on Ñ . Since (M̃, F̃ ) is homogeneous (Theorem 2.2 (c)),

we see that the flag curvature of (M̃, F̃ ) is everywhere nonzero. By Theorem

2.4, M̃ can be written as a coset space of a Riemannian symmetric pair (G, K)

and F̃ corresponds to a G-invariant Finsler metric F̃1 on G/K. Let g = k+p be

the canonical decomposition of the Lie algebra. Then by the formula (6.1), we

see that [u, v] 6= 0, for any vectors u, v in p which are linearly independent. That
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is, G/K is irreducible of rank one. Fix a G-invariant Riemannian metric g̃ on

G̃/K̃. Then Ad(K) acts transitively on the unit sphere of the Euclidean space

(To(G̃/K̃), g̃). Since both g̃ and F̃1 are invariant under the action of Ad(K),

this implies that there exists a positive number c such that F̃1(y) = c
√

g̃(y, y),

for any y ∈ To(G̃/K̃). Hence, F̃1 is Riemannian. Thus F̃ is Riemannian.

Consequently, F is Riemannian on N . Since x is arbitrary, we conclude that F

is a Riemannian metric.

Since a compact Finsler space is complete ([4]), we have

Corollary 8.4: Let (M, F ) be a compact locally symmetric Finsler space. If

the flag curvature of (M, F ) is everywhere nonzero, then F is Riemannian.

It should be noted that the negatively curved case in Corollary 8.4 is also a

corollary of the main result in [12]. It is still not clear whether the results hold

if we drop the complete assumption in Theorems 8.1 through Theorem 8.3. But

we have

Theorem 8.5: Let (M, F ) be a locally symmetric Berwald space. If the flag

curvature of (M, F ) is everywhere nonzero, then F is Riemannian.

Proof: In our previous paper [10], we proved that a locally symmetric Berwald

space is locally isometric to a globally symmetric Berwald space. Therefore, the

result can be proved similarly as Theorem 8.3.

By the result of [10], we easily see that a Berwald space of constant flag

curvature must be locally symmetric. Therefore, we have

Corollary 8.6: A Berwald space of nonzero constant flag curvature is Rie-

mannian.

Note that this result is not new. It is a special case of the Numata’s theorem

(see [4]). But the approaches are very different.

Finally, we make a conjecture about locally symmetric Finsler spaces to con-

clude this paper.

Conjecture: A locally symmetric (not necessarily complete) Finsler space is

a Berwald space.

If this conjecture is true, then the results of Theorems 8.1 through 8.3 still

hold without the complete assumption.
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